\square

INDIAN SCHOOL MUSCAT SECOND PRE - BOARD EXAMINATION CHEMISTRY[043]

TERM 2
Max.Marks: 35

MARKING SCHEME				
	$\begin{aligned} & \hline \text { QN. } \\ & \text { NO } \end{aligned}$	VALUE POINTS		MARKS SPLIT UP
SET A	1		$\begin{aligned} & \text { Pentaaquairon(II)ion } \\ & {[\operatorname{Co(en)} 3]^{3+}} \end{aligned}$	1+1
	2		$\underset{\substack{\text { Acelamide } \\ \mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{NH}_{2}+\mathrm{CHCl}_{3}+3 \mathrm{KOH}}}{\substack{\text { Methanamine }}} \mathrm{CH}_{3} \mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{NC}_{2}+2 \mathrm{NaBr}_{2}+\mathrm{Na}_{2} \mathrm{CO}_{3}+2 \mathrm{H}_{2} \mathrm{O}$	1+1
	3		PCC Fehlings/Iodofrom	$\begin{aligned} & 1 \\ & 1 \end{aligned}$
	4		2-Propanamine Aryl halides do not undergo nucleophilic reactions with the phthalimide ion	1 each
	5.		coagulation electrophoresis-The movement of colloidal particles under the influence of an electric field OR any two differences Peptization is the process of formation of colloidal sol in which conversion of fresh precipitate into colloidal particles by shaking it with the dispersion medium with the help of a small amount of suitable electrolyte	1 each
	6		benzene to benzaldehyde equation Electron releasing group decrease the acidity of ethanoic acid by destabilising the conjugate base whereas the conjugate base of benzoic acid is more stabilisied by resonance P-Nitro benzoic acid, Benzoic acid, p-Methoxy benzoic acid. OR Q-ethanoic acid, R-ethanoyl chloride CrO_{3} $\mathrm{CH}_{3} \mathrm{COCl}+\mathrm{H}_{2}{ }^{\mathrm{Pd}_{2} / \mathrm{BaSO}_{4}} \rightarrow \mathrm{CH}_{3} \mathrm{CHO}$	

	7	a) Ti^{2+} contains unpaired e [d d^{2} configuration $]$ b) $\mathrm{t}_{2 \mathrm{~g}}{ }^{6} \mathrm{eg}_{\mathrm{g}}{ }^{3}$ c) ligand which can attach to the central metal atom through two donor site.eg CN - OR i) $\left[\mathrm{Co}\left(\mathrm{NH}_{3}\right)_{4} \mathrm{Cl}_{2}\right] \mathrm{Cl}$ ii) Double salt ionizes completely in aqueous solution whereas complex salt doesn't iii) 4	1each
	8	a) $\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{CHO}+\mathrm{CH}_{3} \mathrm{NH}_{2} \rightarrow \mathrm{C}_{6} \mathrm{H}_{5} \mathrm{CH}=\mathrm{NCH}_{3}$ b) $\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{CH}_{3}+$ alkaline $\mathrm{KMnO}_{4} \rightarrow \mathrm{C}_{6} \mathrm{H}_{5} \mathrm{COOH}$ c) $\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{COOH} \underline{\mathrm{HNO}}_{3}+\mathrm{H}_{2} \mathrm{SO}_{4} \rightarrow \mathrm{~m}-\mathrm{NO}_{2} \mathrm{C}_{6} \mathrm{H}_{4} \mathrm{COOH}$	1each
	9	a) $\mathrm{Cr}^{3+}-\mathrm{d}^{3}$ stability b) Due to variable oxidation state and provides surface for reaction c) Energy is required to remove one electron from Cu^{+}to Cu^{2+}, high hydration energy of Cu^{2+} compensates for $i t$. Therefore, Cu^{+}ion in an aqueous solution is unstable. It disproportionates to give Cu^{2+} and Cu .	1 each
	10	a) A- strong electrolyte, B- weak electrolyte b) $\wedge^{0}{ }_{\mathrm{NH} 4 \mathrm{OH}}=129.8+218.4-108.9=239.3 \mathrm{Scm}^{2} \mathrm{~mol}^{-1}$ OR Cell reaction: $\mathrm{Zn}(\mathrm{s})+2 \mathrm{Ag}^{+}(\mathrm{aq}) \rightarrow \mathrm{Zn}^{2+}(\mathrm{aq})+2 \mathrm{Ag}(\mathrm{s})$ $\text { Ecell }=1.56-(0.0591 / 2) \log \left[10^{-1}\right]$ $=1.5895 \mathrm{~V}$	$\begin{aligned} & 1 \\ & 2 \\ & 1 \\ & 2 \end{aligned}$
	11	a) Irregular variation of $\mathrm{E}^{0}\left(\mathrm{M}^{2+} / \mathrm{M}\right)$ values for ionization metals is due to irregular variation of ionization enthalpies, heat of sublimation, enthalpy of hydration. b) Behaves as electrolytic cell [reaction gets reversed] c) reaction at the cathode is: $\mathrm{H}_{2} \mathrm{O}(\mathrm{l})+2 \mathrm{e}^{-} \rightarrow \mathrm{H}_{2}(\mathrm{~g})+2 \mathrm{OH}-$ reaction at the anode $-2 \mathrm{Cl}-\rightarrow \mathrm{Cl}_{2}(\mathrm{~g})+2 \mathrm{e}^{-}$	1 $\begin{aligned} & 1 \\ & 1 \end{aligned}$
	12	a) $\mathrm{r}=\mathrm{k}\left[\mathrm{C}_{12} \mathrm{H}_{22} \mathrm{O}_{11}\right]$ b) order $=1$, unit $=\mathrm{s}^{-1}$ c) $\begin{aligned} & {\left[\mathrm{C}_{12} \mathrm{H}_{22} \mathrm{O}_{11}\right]=0.032 / 0.005=6.4 \mathrm{M}} \\ & \mathrm{t}_{1 / 2}=0.693 / 0.005=138.6 \mathrm{~s} \\ & \mathrm{OR} \\ & \mathrm{t}_{99 \%}=\frac{2.303}{k} \log 100 \\ & \boldsymbol{t}_{90 \%}=\frac{2.303}{\mathrm{k}} \log 10 \\ & \frac{\mathbf{t}_{99} \%}{\mathrm{t}_{90 \%}}=2 \end{aligned}$	$\begin{aligned} & \hline 1 \\ & 1+1 \\ & 1 \\ & 1 \\ & \\ & 1 / 2 \\ & 1 / 2 \\ & 1 \end{aligned}$
SET B	1	a) Hexacyanidoferrate(III)ion	1

	3.	b) Haloform reaction	1
	4	a) N,N-dimethylmethanamine	1
SETC	1	a) Hexaamminechromium(III)ion. i) OR Andall effect-Scattering of light by the particles of colloid	$1+1$
	3	b) Haloform reaction	1
			1

